
eukrhythmic

Feb 28, 2023

Contents:

1 Installing eukrhythmic 3
1.1 Downloading eukrhythmic . 3
1.2 Setting up a conda environment for running Snakemake . 3

2 Execution flowchart 5

3 Running eukrhythmic 7
3.1 How to use the pipeline from the command line . 7
3.2 How to use the pipeline directly through Snakemake . 9

4 Running eukrhythmic with the sample data 11

5 Naming your samples and helping eukrhythmic find them 13
5.1 File naming . 13
5.2 The metaT_sample file . 13
5.3 Autogeneration of full metaT_sample file . 13
5.4 Autogeneration of “FastqFileNames” column with “SampleID” column 14
5.5 Notes about manually creating metaT_sample . 14

6 Advanced: Writing a configuration file 15
6.1 Configuration file entries . 15

7 Advanced: Adding unsupported assemblers 17
7.1 Adding new assemblers . 17

8 Intermediate files and cleanup 19

9 Common errors you may encounter 21

10 Acknowledgments 23

11 Source Code 25

12 Indices and tables 27

i

ii

eukrhythmic

Contents: 1

eukrhythmic

2 Contents:

CHAPTER 1

Installing eukrhythmic

eukrhythmic is designed as a modular pipeline that you can fully customize as the user of the resource. As such,
we recommend setting up the base environment provided in the environment.yaml file prior to running anything.

1.1 Downloading eukrhythmic

You may download the pipeline by cloning it directly from GitHub.:

git clone https://github.com/AlexanderLabWHOI/eukrhythmic
cd eukrhythmic

All eukrhythmic commands are run from the base directory.

If you want to receive further information or plan on executing from the command line, go ahead and run:

alias eukrhythmic='./bin/eukrhythmic.sh'

Then, you can execute eukrhythmic -h to see that the software is present in the workspace.

Refer to “Running the pipeline from the command line” for more information on using command-line arguments with
eukrhythmic.

We note that most of our documentation on the use of a scheduler to run eukrhythmic in parallel on multiple
machines is written for the SLURM scheduling system. We provide some documentation on the use of the PBS system
in the “Using eukrhythmic” section, but invite you to submit an issue on our GitHub page if you would like guidance
on how to use PBS or an alternative system to run the pipeline.

1.2 Setting up a conda environment for running Snakemake

Initialize the pipeline by setting up a conda environment, such that all the requested packages are loaded.:

3

eukrhythmic

conda env create eukrhythmic --file environment.yaml

If this doesn’t work for you, please try to set a conda environment manually that contains Snakemake, preferably
newer than version 6, Python, preferably newer than version 3.8, mamba, some version of pandas and some version
of pyyaml.

4 Chapter 1. Installing eukrhythmic

CHAPTER 2

Execution flowchart

You can reference this flowchart for an idea of the steps involved in the eukrhythmic pipeline:

And this diagram for the outputs returned from the pipeline:

5

eukrhythmic

6 Chapter 2. Execution flowchart

CHAPTER 3

Running eukrhythmic

Eukrhythmic is built using Snakemake (documentation).

Users who prefer to use command-line arguments and/or are unfamiliar with Snakemake should read the below
section “How to use the pipeline from the command line”.

Users familiar with Snakemake that would like to execute the pipeline as a Snakemake workflow can skip to “How
to use the pipeline directly through Snakemake”.

If you have trouble getting eukrhythmic configured, we suggest navigating to the “Running eukrhythmic with the
sample data” tab and running the software on our provided subsampled data.

3.1 How to use the pipeline from the command line

To execute eukrhythmic from the command line, alias the executable while in the eukrhythmic base directory
after cloning from GitHub, like so:

alias eukrhythmic='./bin/eukrhythmic.sh'

And then invoke:

eukrhythmic <arguments>

7

https://snakemake.readthedocs.io/en/stable/

eukrhythmic

The arguments that you can use from the command line include:

Table 1: Title
Flag config.yaml entry Meaning
-n / --job-name jobname A descriptive/unique name to be applied to SLURM

jobs.
-s /
--sample-file-name

metaT_sample The listing of SampleIDs, SampleNames, FastqFiles,
and assembly groups for each sample.

-o / --out-dir outputDIR The output directory to write to.
-i / --in-dir inputDIR The location of the sample FASTQ files (crucial unless

running sample data).
-q /
--check-quality

checkqual Takes no arguments. If specified, quality assessment is
run on assemblies.

-b / --run-bbmap runbbmap; spikefile If your data contains spiked reads, you can list this flag
and specify a FASTA file containing the spike.

-l / --slurm N/A If provided, run snakemake on SLURM.
-g /
--generate-file

N/A If provided, create the sample file automatically from
the files present in the input directory.

--use-sample N/A If provided, override all other parameters and run the
sample file.

-c / --scratch-dir scratch Takes argument of the directory to be used as scratch
space.

If you need to use more options than this, you’ll need to create a configuration file. You can edit the provided config.
yaml file in order to do this. In the “Advanced: Writing a configuration file” tab of the documentation, you can find a
list of the supported entries that you can add to your config.yaml file.

To get started using the pipeline, the most important thing to do is to specify the paths to your particular input and out-
put directories. Strictly speaking, there are four things you’ll probably want to specify before running eukrhythmic
on your own data:

• jobname - some random name that will determine how your SLURM sub-jobs are being called

• metaT_sample - the location of the file containing all relevant information needed to run the pipeline (e.g.,

8 Chapter 3. Running eukrhythmic

eukrhythmic

created using Google Sheets in TSV form) ideally located in input/ (see below for more information on the
metaT_sample file)

• inputDIR - where your raw fastq sequence files are

• outputDIR - where you want your output to go

• scratch - where you want non-essential intermediates to go

Which could be done on the command line using:

eukrhythmic -o <output_dir> -i <input_dir> -s <metaT_sample_file> -c <scratch_
→˓directory>

All input fastq files must be contained in the same directory, the inputDIR location, specified by the --in-dir
flag. Only these metatranscriptomic data will be included in the analysis. These files do not, however, need to be
located inside the eukrhythmic directory (and it is recommended that they are located elsewhere).

The next thing that needs to be done is to produce the sample file, containing all of the relevant information to run
the pipeline. You can create this yourself (:ref:manual), using only a list of Sample IDs (:ref:fastqauto), or
completely automatically (:ref:fullauto), which can be done all in one with the eukrhythmic bash script, by
specifying:

eukrhythmic --in-dir <name-of-your-input> --out-dir <name-of-your-output> -g

using the -g or --generate-file option, which runs the included script (:ref:fullauto). For further informa-
tion on any of these options, please read the “Naming your samples and helping eukrhythmic find them” section of the
documentation.

Using a scheduler

If you are running on an HPC system that uses the SLURM scheduler, invoke eukrhythmicwith one argument: -l or
--slurm to leverage your computing resources. In that case, you will also want to invoke sbatch eukrhythmic
--slurm, to avoid running any steps on your current remote machine. You can also use the -np or --dry_run
flag to run do a Snakemake dry run, to see whether the jobs to be run align with your expectation (you can do this
whether or not you are using a scheduler). If you need to use a different scheduler than SLURM, please run the pipeline
through Snakemake (instructions below).

If you use PBS, a flag already exists. Otherwise, please submit an issue on our GitHub repository so that we can work
together to find a solution! You will want to edit the cluster.yaml file to reflect the memory and time requirements
of your system. Just populating the _default_ and required sections will do.

3.2 How to use the pipeline directly through Snakemake

To use the pipeline as a Snakemake workflow, the most important thing to do is to populate config.yaml with the
paths to your particular input and output directories, and to generate the sample file (either manually (:ref:manual) or
using a semi (:ref:fastqauto) or completely automatic procedure (:ref:fullauto). Personalizing this will allow
the pipeline to pull the relevant files when computing the results of individual rules, so this step is crucial. You should
also edit any other important parts of the configuration file, as described in the separate section of the documentation.

You’ll find further information about the configuration file in “Advanced: Writing a configuration file”, and more
information about the sample file in “Naming your samples and helping eukrhythmic find them”.

Once the pieces are in place, and you have either activated an environment using environment.yaml or otherwise
installed snakemake, you can run the pipeline using:

sbatch submit/snake_submit.sh <snakefile> <number of jobs> <optionally, --rerun-
→˓incomplete>

3.2. How to use the pipeline directly through Snakemake 9

eukrhythmic

Or, wrapping this command with the ability to specify eukrhythmic subroutines rather than selecting a configura-
tion file, you can invoke eukrhythmic with:

python submit/eukrhythmic <subroutine>

Where “<subroutine>” is the subset of eukrhythmic functionality that you wish to use for this run. In most cases,
you’ll write “all” here, to indicate that you wish to run all of the steps of the pipeline sequentially.

If you are using the SLURM scheduler, you can run the pipeline by executing the submit/snake_submit.sh file
in the eukrhythmic directory, after configuring options for your particular system (:ref:slurm), or by setting the
rewritecluster configuration flag to 1, and specifying the options for all jobs in the required section of the
cluster.yaml file. If you are not using a scheduler, or are logged into a computer with sufficient computational
resources (e.g., a SLURM job run in interactive mode), you can execute Snakemake directly.

You can also do this using the submit/eukrhythmic script <Arianna needs to explain this script and the subrou-
tines. She also needs to add ability to specify subroutines in the bin/eukrhythmic file.>

Running the pipeline with ‘‘SLURM‘‘

In order to run the pipeline with SLURM or any other similar scheduling platform on an HPC system, the file
cluster.yaml in the base directory needs to be populated. Specifications for individual rules can be added or
removed as needed; the default configuration is what must absolutely be specified for the pipeline to run properly.
Make sure that you include the following:

• Your account name

• Any flags that you typically use when running commands on the system, in the __default__->‘‘slurm‘‘-
>‘‘command‘‘ string

• The partition of your system that you plan to use, as queue. By default, this might be compute or normal.

If you set your account name at the top of the cluster.yaml file, as well as setting the default partition just once,
and you do not change the parameter rewritecluster to 0 in config.yaml, you can use the command line
interface or the provided submission file to circumvent filling out the rest of cluster.yaml. You can also do this
by invoking python scripts/importworkspace.py once before running the pipeline, if you already have
a valid config.yaml. If you do this, you won’t need to change these values for the specifications for all of the
individual rules, unless you have specific computational needs or usage requirements, in which case you should set
rewritecluster to 0. If defaults are not specified at the beginning of the cluster.yaml file for the user,
maximum memory usage, maximum number of cores, and maximum number of threads, eukrhythmic will not
execute successfully and an error will be thrown.

Running the pipeline with ‘‘PBS‘‘

There are four flags you can use with the python submit/eukrhythmic command for the use of an alternative
scheduling system. These presently include the pbs and slurm systems; slurm is accessible with --system
slurm or --system sbatch, and pbs is accessible with --system pbs or --system qsub. PBS is
presently in beta mode for testing purposes, but should function more or less identically to the use of the SLURM
system.

Setting CPUs and memory requirements

As a general rule for memory-intensive assemblers, the memory available to the process should be about ten times
the number of cores/CPUs that you have available to you on the machine. For example, if using a machine with 30
cores available and 300 GB of available memory, you may want to configure your jobs to use 15 cores and 150 GB of
memory, to allow two jobs to run concurrently on one node, and optimize memory relative to number of cores.

10 Chapter 3. Running eukrhythmic

CHAPTER 4

Running eukrhythmic with the sample data

Note that running eukrhythmic on the sample data will take a little while. When we tested this functionality on our
system, we used the following amounts of time and memory:

The sample data being run can be found in input/testdata/, and contains five small sample raw read files. The
sample metaT file for this dataset is in input/sampledata.txt:

SampleName SampleID AssemblyGroup FastqFile
HN008_subsampled HN008 samplegroup1 HN008/HN008_subsampled
HN009_subsampled HN009 samplegroup2 HN009_subsampled
HN016_subsampled HN016 samplegroup1 HN016_subsampled
HN036_subsampled HN036 samplegroup2 HN036_subsampled
HN043_subsampled HN043 samplegroup2 HN043_subsampled

In the SampleName column, we put our longer descriptive name that matches our filename, whereas SampleID
contains the smallest unique token we can make out of our sample names. In AssemblyGroups, we list the files we
want the assembly software to have to assemble simultaneously. Even though all of our samples will eventually get
combined, some of them will be treated independently to begin with by the assembly tools, and others won’t. In this
example, HN008 and HN016 are likely from the same site, for example.

In FastqFile, we use the full path of the file relative to the sample directory (which in our case is input/
testdata). HN008 has a subdirectory, so this syntax lets us leave our file organization as it is as we’re running
eukrhythmic.

To run eukrhythmic on the provided sample data, invoke eukrhythmic on a clean install of the program without
arguments. You can also run the sample data by using the argument --use-sample, which will copy the relevant
configuration entries.

11

eukrhythmic

Without any additional flags, eukrhythmic will be run against the provided sample data on your local machine (or
your current node on the cluster, if you’re logged into one). You should see a dialogue like this one:

12 Chapter 4. Running eukrhythmic with the sample data

CHAPTER 5

Naming your samples and helping eukrhythmic find them

5.1 File naming

Your file names should not subset one another. So if one file is called “supercool_sample”, another should not be
called “supercool_sample_2”. However, if the two were called “supercool_sample_1” and “supercool_sample_2”,
this would be fine, because neither name is entirely found within the other.

5.2 The metaT_sample file

In the config.yaml file, there is a listing for a file called metaT_sample in the configuration file. This is essentially
the data input source as far as what sample names you are expecting to include in your analysis, as well as any other
information about the samples that you would like to be used. This is essential if you would like to apply groupings
and co-assemble several samples together, and in general it is essential for the pipeline to work as intended.

Depending on the application, some columns of this file must be added or may not be necessary. For example, for
repeated samples in the same location, the latitude and longitude may not be necessary, because geographic variation
in the metatranscriptomic assembly will not be evaluated. Any data that are not included in the default steps in the
provided script can be excluded.

As detailed in scripts/make_sampleinfo.ipynb, the minimum required to run the general (default) pipeline without any
comparative analysis between samples are the “SampleName”, “SampleID” and the “FastqFileNames”. SampleName
and SampleID can be identical if no such distinction exists in your sample. However, strictly, “SampleName” is a
descriptive name for your samples, whereas “SampleID” is how the samples will be named throughout the pipeline,
thus is is preferable to minimize special characters and length in the “SampleID” column, whereas “SampleName”
may be more verbose.

5.3 Autogeneration of full metaT_sample file

Using the script scripts/autogenerate_metaT_sample.py, you can autogenerate a working sample file
for whatever files are present in the directory specified in your configuration file as inputDIR. This file should be

13

eukrhythmic

run from the base eukrhythmic directory. At minimum, it requires a name for the output metaT_sample file as
a parameter, which will be saved in the input directory, and then should be specified in the configuration file as the
metaT_sample file. (Note: in the future, we aim to autopopulate the config file with this entry and allow users to run
the pipeline without even running this separately, with a default name for the ‘‘metaT_sample‘‘ file, as long as the
‘‘inputDIR‘‘ is specified).

So within the base eukrhythmic directory, the following command may be run:

python scripts/autogenerate_metaT_sample.py testsampledata.txt

Optionally, additional parameters may be provided. The second optional parameter is a file extension, which defaults
to “fastq.gz”. The third and fourth optional parameters are labels for forward and reverse reads (defaults to “_1” and
“_2”, respectively), and the fifth optional parameter is an additional file suffix used to split the filename (e.g. 001;
defaults to the file extension; specifically important for single-end reads).

5.4 Autogeneration of “FastqFileNames” column with “SampleID”
column

In /scripts/, there is a Python script called make_sample_file.py that will generate the fastq file names col-
umn, given your data input folder and an existing metaT_sample file that contains sample IDs. This is a good
option if you only wish to run a subset of the files in your input data folder, and want to make sure the fastq file
names are properly formatted.

If you use this script, all of the files with the fastq extension listed in your INPUTDIR that have a match to entries
in your SampleID column will be included. Optionally, the script accepts up to two input arguments that specify how
forward/reverse reads are labeled. By default, “_R”, “_1”, and “_2” are searched for.

5.5 Notes about manually creating metaT_sample

If you specify “FastqFileNames” manually, ensure that the files are named uniquely and that the entire unique
choice of name is specified in this column. Filenames that match to more than two fastq files in your input
directory will raise an exception.

In the event that you want more control over how your samples are named, use scripts/make_sampleinfo.
ipynb. The AssemblyGroup column may be omitted if you do not mind if your samples are assigned assembly
groups according to numbers 1-n, where n is your number of samples, but in this case separategroups must be
set to 0 in your config.yaml file. (In the future, this may be updated to be done automatically if the column is
absent, as well).

Once you have generated the metaT_sample file containing the information about your samples, and have populated
config.yaml with the relevant directories, including, importantly, outputDIR, which will be the location of your
results, you are ready to run the pipeline.

14 Chapter 5. Naming your samples and helping eukrhythmic find them

CHAPTER 6

Advanced: Writing a configuration file

To write a configuration file for eukrhythmic, you need to edit the config.yaml file included in the
eukrhythmic base directory. This YAML-formatted file can be modified by changing the entries to the right of
each of the colons in each line of the file.

6.1 Configuration file entries

Below is a listing of each supported entry in the configuration file (config.yaml in the base directory) and how to
specify each flag when using the pipeline.

15

eukrhythmic

Table 1: Title
Flag in file Meaning & how to specify
metaT_sample The name of the sample file containing sample ids to be used as unique identifiers in

the pipeline, descriptive sample names, and input FASTA file names.
inputDIR The file directory where the input data is found. Currently, should be specified with

“/” separators, but no trailing “/”. Should begin with “/” only if you are going to the
root of your file system (not a relative path).

checkqual Boolean flag for whether to run quality checking with salmon, QUAST, BUSCO, etc.
on assemblies. If 1, these quality checks are performed.

spikefile A path to a FASTA file containing the sequence of any spiking that might affect reads.
This will depend on experimental setup. If the file is not valid (e.g., if this flag is set
to 0), nothing is done.

runbbmap A boolean flag to specify whether to use a spike file to drop spiked reads, according
to what was done in your experiment. If 1, the spikefile is used; otherwise, this
filtering is either not performed or is not used downstream in the pipeline (depending
on whether a spike file exists).

kmers A list of k-mer sizes to use, where applicable, in assembly. These should all be integer
values (default: 20, 50, 110). The median k-mer value in this list will be used when
just 1 k-mer value is required.

assemblers The assemblers to be used to assemble the metatranscriptomes (which will later be
merged). All of the specified assemblers in this list should have matching Snakemake
rules in the modules folder of the main pipeline directory (named identically), as
well as “clean” rules (explained below).

jobname A descriptive name to be used to name jobs on your high-performance computing
system, such that you can track the progress of your workflow.

adapter Path to a FASTA file containing the adapter used during sequencing. Defaults to a
static adapter file in the static directory.

separategroups A boolean flag. If 1, specified assembly groups in the metaT_sample file are used
to co-assemble raw files. Otherwise, each raw file is assembled separately regardless
of what is specified in the “AssemblyGroup” column of the input file.

outputDIR The path to a directory where all program output will be stored.
assembledDIR The directory to move assembled files to, relative to the output directory. Defaults to

“assembled”; not necessary to specify.
renamedDIR The directory to move “renamed” files to (which are files with the name of the as-

sembler added to each FASTA header), relative to the output directory. Defaults to
“assembled”; not necessary to specify.

scratch The location to move unnecessary intermediate files to after computation.

16 Chapter 6. Advanced: Writing a configuration file

CHAPTER 7

Advanced: Adding unsupported assemblers

7.1 Adding new assemblers

In order to add a new assembler to the pipeline that is not presently included, three things need to be included:

1. A rule for the assembler, including a command that can be run using software in the specified conda environ-
ment, called <assembler>.

2. A rule to “clean” the assembly output, named <assembler>_clean, including moving the completed assem-
blies to the shared assembly folder, specified as assembledDIR, which is a subdirectory of the outputDIR,
also specified in the configuration file. Intermediate files should also be moved to a scratch directory or deleted,
based on user preferences and space requirements. Any other files needed by other tools or desired by the user
should be moved to a subdirectory of the output directory. If they are specified as output files, snakemake will
generate them automatically. Otherwise, the user will need to manually create directories that do not already
exist (specifying them as output files is more extensible).

3. A list entry for the assembler in the configuration file that matches the name of <assembler> in each
snakemake rule.

17

eukrhythmic

18 Chapter 7. Advanced: Adding unsupported assemblers

CHAPTER 8

Intermediate files and cleanup

A “scratch” directory, specified in the configuration file, is used to store intermediate files after execution of rules such
as assembly, which produce many files which are not needed downstream in the pipeline. To override this behavior,
specify the output directory and the scratch directory to be the same location.

After the pipeline has been run, simply enter:

snakemake hardclean --cores 1

To safely remove the scratch directory, if you don’t need the intermediate files generated in individual pipeline steps.

19

eukrhythmic

20 Chapter 8. Intermediate files and cleanup

CHAPTER 9

Common errors you may encounter

For errors that you don’t find on this page or in the Snakemake (documentation), we encourage you to submit a ticket
through GitHub issues. Please read the past issues first to see if we’ve addressed it before. If an open issue already
exists, but it hasn’t been answered, please feel free to add additional details to the thread. We will get back to you as
soon as we can!

If you receive this error:

Error: Directory cannot be locked. Please make sure that no other Snakemake process
→˓is trying to create the same files in the following directory:

path/to/eukrhythmic/dir/eukrhythmic

If you are sure that no other instances of snakemake are running on this directory,
→˓the remaining lock was likely caused by a kill signal or a power loss. It can be
→˓removed with the --unlock argument.

This means that eukrhythmic was run at one point and was not able to exit gracefully. Just run snakemake -s
eukrhythmic --unlock to remove the lock on your directory.

21

https://snakemake.readthedocs.io/en/stable/
https://github.com/AlexanderLabWHOI/eukrhythmic/issues

eukrhythmic

22 Chapter 9. Common errors you may encounter

CHAPTER 10

Acknowledgments

The eukrhythmic pipeline was written by:

• Arianna Krinos

• Harriet Alexander

• Natalie Cohen

With invaluable guidance and assistance from coauthor:

• Mick Follows

And contributing reviewers:

• Maggi Mars Brisbin

• Sarah Hu

We thank our many contributors and testers for their help with development and use of the pipeline!

23

eukrhythmic

24 Chapter 10. Acknowledgments

CHAPTER 11

Source Code

You can find the source for eukrhythmic on GitHub.

25

http://github.com/AlexanderLabWHOI/eukrhythmic

eukrhythmic

26 Chapter 11. Source Code

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

27

	Installing eukrhythmic
	Downloading eukrhythmic
	Setting up a conda environment for running Snakemake

	Execution flowchart
	Running eukrhythmic
	How to use the pipeline from the command line
	How to use the pipeline directly through Snakemake

	Running eukrhythmic with the sample data
	Naming your samples and helping eukrhythmic find them
	File naming
	The metaT_sample file
	Autogeneration of full metaT_sample file
	Autogeneration of “FastqFileNames” column with “SampleID” column
	Notes about manually creating metaT_sample

	Advanced: Writing a configuration file
	Configuration file entries

	Advanced: Adding unsupported assemblers
	Adding new assemblers

	Intermediate files and cleanup
	Common errors you may encounter
	Acknowledgments
	Source Code
	Indices and tables

